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1. INTRODUCTION

Given a Gibbs measure on the one dimensional lattice Z with translation-
invariant potential of finite range, we construct an exchange rate for one-
dimensional lattice gas which satisfy both the detailed balance condition
relative to the Gibbs measure and the gradient condition. For the construc-
tion, we use an infinite system of linear equations indexed by finite sets
which is given in ref. 4. Since this system of equations has plenty of
freedom, it has many solutions, most of which do not possess properties
necessary for constructing the desired exchange rate. Our strategy is to find
a suitable condition such that the system with it added becomes uniquely
solvable and the unique solution satisfies the required properties.

Based on an exchange rate which satisfies both the detailed balance
condition and the gradient condition, we can prove the hydrodynamic limit
for every one-dimensional lattice gas reversible under the Gibbs measure
that is not necessarily of gradient type, in a way parallel to refs. 2 and 5
with the help of the result of ref. 3 on the spectral gap.
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For every Gibbs measure on the one dimensional lattice Z with translation-
invariant potential of finite range, an exchange rate for one-dimensional lattice
gas which satisfy both the detailed balance condition relative to the Gibbs
measure and the gradient condition is constructed.
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It is sometimes interesting to study an asymmetric process which is
obtained by modifying a symmetric exchange rate (i.e., one satisfying the
detailed balance condition) through a bias, while the class of invariant
measures for biased process is not known in general. But if the symmetric
exchange rate satisfies the gradient condition, then the class of invariant
measures for the biased process coincides with that for the original sym-
metric process. Moreover, the converse is shown to be true, namely, such
coincidence of the classes of the invariant measures implies the gradient
condition of the symmetric process. (See Section 5 for details.)

Let n = ( n x ; x e Z), nx = 0 or 1, denotes an element of {0, 1}Z, the
state space of one-dimensional lattice gas. The site x is interpreted as
vacant if nx = 0 and occupied if nx= 1. The potential { J A } A < z is supposed
to have a finite range: there exists a constant p such that

whenever diam

and to be translation-invariant:

We define a Hamiltonian HA(n.)) = H J
A ( n ) by

and a shift operator ix by

Our main result is stated as follows.

for all and

for all

for all and

Theorem 1.1. There exists an exchange rate c ( x , x + 1 , n ) which
satisfies the following conditions:

1. Locality: c(x, x + 1 , n ) depends only on { n z ; \z — x\ <r} for some
r>0.

2. Translation invariance: c ( x , x + 1 , n ) = c(0 , 1 , i x n ) , for all xeZ.
3. Positivity and exclusion: c ( x , x + 1 , n ) > 0 if n x n x + 1 , and

c ( x , x + 1 , n ) = 0 if nx = nx + 1.
4. Detailed balance condition:
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where

5. Gradient condition: there exists a local function h ( n ) such that

Remark 1.2. Uniqueness of the exchange rate satisfying the condi-
tions given in Theorem 1.1 does not hold. Presumably there exists a family
of such exchange rates that involves continuum of parameters for each
potential. We have no proof in general, but there are examples in refs. 1
and 4.

Remark 1.3. The function c(x, x + 1 , n ) that we shall construct
depends only on { n z ; z e { x — p, x — p+ 1,..., x + p, x + p+ 1}}; Hence the
function h ( n ) of (4) depends only on {nz; ze { — p, —p+ 1,..., p— 1, p } } .

2. A SYSTEM OF LINEAR EQUATIONS FOR ( a ( A ) }

In this section we describe a system of linear algebraic equations given
in ref. 4. By the condition 2 we have only to consider the case x = 0. We
define AH(n} by

Here £* stands for summation over all finite subsets A c Z which contain
neither 0 nor 1. Note that A H ( n ) does not depend on ( n 0 , n 1 ) . By the
conditions 3 and 4 of Theorem 1.1 c(0, 1, n) must be given in the form,

where g is a positive local function which dose not depend on n0, n1,. Let
us write A cc Z if A is a finite subset of Z and if we expand the function
h appearing in the gradient condition in the form
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Then

We rewrite (6) as

Equating the right side of this with that of (8) and comparing the coef-
ficient of 1,n0,n1 and n0n1 we deduce the following system of equations

The equation (9) holds if and only if

Since the sum on the left sides of the equations (10)-(12) vanishes, they
imply that

Since eAH(n]} dose not depend on n0,n1 we can expand it in the form

From the equations (10), ( 1 1 ) and (15) it then follows that

for all

for all

for all



Gradient Condition for 1D Symmetric Exclusion Process 591

Conversely, if a collection { a ( A ) } A c c Z solves (13), (14) and (16), and we
define g ( n ) by (10), then we have the equations (9) through (12), so that
the exchange rate given by (6) satisfies both the gradient condition and the
detailed balance condition, provided that the function h(n) given by (7) is
local and the function g(n) given by (10) satisfies g ( n ) > 0 .

3. NOTATIONS AND SOME RESUTLS

For A cZ\{0, 1} we define AH(A) by

It immediately follows that

where S (n ) is the support of n, i.e., S ( n ) = {xeZ : nx = 1}.
We consider the sets

In view of (1) it holds that

and

Remark 3.1. In the sequel we shall make use of some elementary
formulas on the summation over subsets of a finite set, which are recalled
here.

(i) By the binomial expansion of (1 — l)#A we have
EBCA(-l)#(A\B) = 0 if A=O.

(ii) Let Q be a finite set. If f and g are functions of subsets of Q, then
by using (i) it is easy to check that the following two conditions
are equivalent.

Lemma 3.2. The coefficients d(B) defined by (15) satisfies that

for all

for all

for all such that
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Proof. Decompose B into C = B n F and D = B\F. Then by Remark 3.1
and (17)

but the first factor of the last line equals zero according to Remark
3.1(i). |

Lemma 3.3. If a collection { a ( A ) } A c c z satisfies the following two
conditions

(i) a(A) = 0 for all A such that A o A c = O , and

(ii) { a ( A ) } A c c A solves the equations (13), (14), (16) for all
AccA\{0,\},

then the collection {a(A)} Accz solves the equations (13), (14), (16) for all
AccZ\{0, 1}.

Proof. We have only to check (16) for A such that A n Ac + 0. The
left side of (16) is written as

of which the second term vanishes, since if DC A and D r \ A c = O , then
d(D) = 0 by Lemma 3.2. By condition (i), a(A u {0} ) = a ( t _ 1 ( A u {0})) = 0,
and if E c A and E n Ac=O then a(E u { 1 } ) = a ( t _ 1 ( E u {1})) = 0, so that
the other two terms also vanish. |

Put

Then it is easy to check that the conditions (i) and (i i) of Lemma 3.3 hold
if and only if the following system of equations holds
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whenever

for all

for all

for all

Recall the remark given at the end of Section 2, where we state the conditions
for h (n ) and g ( n ) , that is, h ( n ) is local and g ( n ) > 0. These are written as

for all

and

whenever

where C is some finite set.
Given a set function (b(A)} Acca\{0, 1}, we introduce an additional

system of equations

so that we will get a unique solution of (19)-(23) and (26). If b(A)>0 for
all A cc A\{0, 1}, then the unique solution satisfies (24). Thus our
problem of constructing h is solved if we can find b(A) >0 so that the
corresponding solution a(A) also satisfies (25). Our proof of Theorem 1.1
in the next section consists of proving (25) for a suitably chosen {b(A)}.

4. CONSTRUCTING AN EXCHANGE RATE

Definition 4.1. We define a mapping f from all finite subsets of
Z\{0, 1} into themselves by
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and then tn, n>2, inductively by tnA = t ( t n - 1 A ) . We define t-1 in the
same way but with the position —k replaced by k + 1 and at the same time
the shift tk by t_ k , and define tn for n < — 1 by iteration. Clearly t-1 is the
inverse of f.

For A ccZ\{0, 1} we define b(A) by

From (17) and (18) it follows that

for all

Lemma 4.2. {b(A)} has the following properties

1. Locality:

for all

2. Relation between b(A) and b ( t A ) :

for all

3. Positivity:

for all

The property 1 will follow from the next lemma.

Lemma 4.3. It holds that

Proof. Let A c c Z \ { 0 , 1} and k be the number of connected com-
ponents of A. We may suppose min A = 2 since there can always be found
« such that min tnA = 2. We write

for all
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where A/ are connected components arranged in order from the left to the
write; A i ={a i , a i +1, . . . , b i } , 2 = a 1 < b 1 < a 2 — 1 <b2< . . . <a k —1 <bk.
We define Ai (1 < 1 < 2 k ) by

where

Notice that the mapping f conserves the number of connected components
as well as the number of elements. The function / is chosen so that the
left end of the ith component of A2i_1 is 2 and the right end of the ith
component of A2i is —1. Now, if tkA =T1 tk-1A (i.e., — 1 £ t k - l A ) , then
E D C T

k A J D u { 1 } =EDct
k

-1A J D U { O } . So

We must show that the right side of (32) vanishes. To this end we construct
the one-to-one mapping from ( U i = i p ( A 2 i - 1 ) into Uk p ( A 2 i ) , where
P(A) denotes a power set of A. To define the mapping, first we decompose

Ai into connected components Ai,j for 1< j < k :

Now consider a subset DcA 2 i _ 1 . Put Dj= D n A 2 i _ i , j if j = i , and
Di = (DnA 2 i - 1 , i )u {1}, and define kDi by

Because kDi<oo, there exists 1<p<k and positive integers j1, j2,..., jp

which satisfy kDj1 — kDj2 = . . . = kDjn <kDm for m + jq (q= 1, 2,..., p). Weh n jp
 m *

order the number 1, 2,..., k by i, i+ 1,..., k, 1, 2,..., i— 1 and let jq be the first
member of { j 1 , . . . , j p } in this ordering. Then we can find E C A 2 j such that

where l = bjq — kDjq . We can determine the inverse mapping in the same
manner but with the position k replaced with — k + 1 and the ordering is
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reversed. It would be clear that by means of this one-to-one corre-
spondence the sum on the right side of (32) vanishes by cancellation. |

Proof of Lemma 4.2. If A = BuC where B = An(A\F) and
C = A\B then

because ( t A ) n r does not depend on the part B of A. Hence

On the other hand, by Lemma 4.3,

which shows b(C) = b(CnF) by the same reasoning as above. Thus
b(A) = b(Cn F) = b(A n F). The property 1 has been verified. The proper-
ties 2 and 3 are trivial by definition. |

Lemma 4.4. Let h(A) be given by (27). Then the unique solution of
(19)-(23) and (26) satisfies the condition (25).

Proof. Clearly it suffices to prove

(i) if 0=A then a(A)=0,

and

(ii) if diam A >diam F then a(A) = 0.

The proof of (i) is carried out by double induction on #A and max .4.
Given a set A such that 0eA, we will assume that a(B) = 0 if either
#B< #A, 0eB or #B= #A, max5<max A, 0eB. The equation (21)
and the assumption imply that

The equations (21) and (26) imply that
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The equations (2 l ) - (23) and (26) imply that

for all A such that 0, 1 e A

Hence for all A such that 0e A and 1 e A we have

and

The two equations (35) and (36) imply that
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for all A such that 0eA, 1 eA. By (21) and (33), we have only to consider
A c c A such that 0 eA and 1 c A. By the assumption of induction a(A) =
E D c A

a ( D ) for 0eA. We may suppose that A cc A is a union of
{1, 2,..., k} ( k > 1 ) and A for which An {1, 2,..., k, k + 1} = O. Then we
have by (35)

By (37) the last sum equals

and repeating the same procedure we arrive at

Therefore by (34)

which vanishes in view of (28) and (29) since t({ —1, —2,..., — ( k — 1)} u
T - k A ) = {1, 2,..., k} u A. Claim (i) has been verified.

For the proof of (ii) it suffices, by virtue of the first claim (i), to prove

If 0, 1eA then (38) is trivial. Suppose 0, 1 eB and consider the cases
A = B u { 0 } , B u { l } or Bu{0, 1}.
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We decompose B into C = BnT and D = B\F and apply Remark
3.1(ii), the defining relation (26), (28) and Remark 3.1(i) in turn to see

(notice that D=O since diam A > diam F). We can show a(B u {1}) =
a(B u {0, 1}) = 0 in the same way. |

For the proof of Remark 1.3 we prove that the exchange rate constructed
by the solution of (19)-(23), (26) and (27) depends only on { N z ; z e { — p ,
—P+1,.. . , P, P + 1}}, and the function h ( n ) in (4) depends only on { n z ;
z e { — p , —p+1,. . . , p — 1, p } } . To this end we first notice that the
exchange rate c(0, 1, q) is rewritten as

where S ( n ) is the support of n, i.e., S ( n ) = {xeZ : nx = 1}. Since b(A) =
b ( A n F ) and e - A H ( A ) = e - A H ( A N F ) ,c(0, 1, n) depends only on {nz; zeT} =
{ n z ; ze { — p, —p+ 1,..., p, p + 1 } } ; hence so does T 1 h ( n ) — h ( n ) = c(0, 1, n) x
(n1— n0). It would be obvious that the function h(n) depends only on
{n2; ze{-p, -p+1,..., p-1, p } } .

5. BIASED EXCHANGE RATE

In this section, we consider the driven lattice gas on a discrete torus
TN = Z/NZ. Assume c ( x , x + 1 , n ) satisfies the condition 1-4 of the
Theorem 1.1. Let LN be the generator defined by

and XN be the Markov process whose generator is LN. A rate
cp(x, x+ 1 , n ) , defined by
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0 < p < l , is called a biased (exchange) rate. Let LN
p be the generator

defined by

and Xp be the Markov process whose generator is LN
p .

Proposition 5.1. For each sufficiently large N, the class of
invariant measures for XN coincides with that of XN if and only if
c(x, x + 1 , n ) satisfies the condition 5 of Theorem 1.1.

Proof. Assume uN is an invariant measure of XN, which is a Gibbs
measure on TN with Hamiltonian. By a simple computation,

By the condition 5 of Theorem 1.1 the right side of (39) is equal to

hence the sufficiency is proved

The proof of necessity is immediate from (54) and the following lemma.

Lemma 5.2. Let F(N) =EAcTN f ( A ) n A be a local function and
satisfies

for all n. Then there exists a local function g ( n ) such that

Proof. First, we show that the coefficient f(A) satisfies that
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for all A c TN by induction on the cardinality of A. Let A = 0, considering
n:nx = 0 for all x e TN, then we have

Assume that if Bc A but B=A, then ZxeTN f ( t x B ) = 0. Considering
n:nx=1 for all xeA and nx = 0 for all x e A , then we have

We partition the power set p ( T N ) into the equivalence classes of con-
gruence. Denote by P the set of representations, i.e., T is a family of sets
which satisfies that

(i) If AeF, then T x Ae t for x=0

(ii) {T x A} x e T N , Aet= p(TN)\O.

By means of t, the function F may be written as

Because F ( n ) is a local function, for each A et f(txA) vanishes except for
a finite number of x. We can choose n and {xi}

n
=1 such that x i<x i+1 and

f ( t x A ) = 0 if x =xi for all i. Now we decompose

repeating the same procedure we arrive at

The second sum is equal to zero according to the equality (41). It is easy
to see that the first sum is of the form g A ( n ) — t 1 g A ( n ) . |
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